Modelling 1 SUMMER TERM 2020

LECTURE 9

Eigen- and Singular Values

Eigenvectors and Eigenvalues

Eigenvectors & Eigenvalues

Definition:

Linear map A, non-zero vector x with

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- λ an is eigenvalue of **A**
- x is the corresponding eigenvector

Example

Intuition:

 In the direction of an eigenvector, the linear map acts like a scaling

- Example:
 - Two eigenvalues (0.5 and 2)
 - Two eigenvectors
- Standard basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$: not eigenvectors

Eigenvectors & Eigenvalues

Theorem

- All real, symmetric matrices can be diagonalized
 - Orthogonal eigenbasis $\mathbf{U} = (\mathbf{u}_1 | ... | \mathbf{u}_d)$

$$\bullet \mathbf{A} = \mathbf{U} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

Symmetric matrices encode only non-uniform scaling

Diagonalization

Eigenvalue decomposition (diagonalization)

Always possible for symmetric matrices

• Symmetric: $\mathbf{A}^{\mathrm{T}} = \mathbf{A}$

Computation

Simple algorithm

- "Power iteration" for symmetric matrices
- Computes largest eigenvalue even for large matrices
- Algorithm:
 - Start with a random vector (maybe multiple tries)
 - Repeatedly multiply with matrix
 - Normalize vector after each step
 - Repeat until ratio before / after normalization converges (this is the eigenvalue)
- Intuition:
 - Largest eigenvalue = "dominant" component/direction

Powers of Matrices

What happens:

A symmetric matrix can be written as:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

Taking it to the k-th power yields:

$$\mathbf{A}^{k} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}\cdots\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}} = \mathbf{U}\begin{pmatrix} \boldsymbol{\lambda}_{1}^{k} & & \\ & \ddots & \\ & & \boldsymbol{\lambda}_{n}^{k} \end{pmatrix}\mathbf{U}^{\mathsf{T}}$$

EV's key to understanding powers of matrices

Generalization: SVD

Singular value decomposition:

For any real matrix A

$$\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}}$$

- U, V are orthogonal
- D is a diagonal
- Diagonal entries σ_i : "singular values"
- U and V are different in general
 - For symmetric matrices, they are the same
 - Then: singular values = eigenvalues
- Analogous for linear operators (∞-dim)

Singular Value Decomposition

Singular value decomposition

"the Swiss army knife of linear algebra"

[wikipedia user Bisco]

Comparison: Diagonalization

Eigenvalue decomposition (diagonalization)

(For symmetric matrices)

Singular Value Decomposition

SVD Solver

For full rank, square A:

$$\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}}$$

$$\Rightarrow \mathbf{A}^{-1} = (\mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}})^{-1} = (\mathbf{V}^{\mathrm{T}})^{-1} \mathbf{D}^{-1} (\mathbf{U}^{-1}) = \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\mathrm{T}}$$

- Numerically very stable
- More expensive than iterative solvers
- General A possible (least-squares / pseudo-inverse)
 - More later