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Cigenvectors and
“igenvalues




Eigenvectors & Eigenvalues

Definition:
= Linear map A, non-zero vector x with
Ax = Ax
= 1l anis eigenvalue of A
= X IS the corresponding eigenvector



Example

Intuition:
= |[n the direction of an eigenvector, the linear map acts
like a scaling
\\
= Example:

= Two eigenvalues (0.5 and 2)
= Two eigenvectors \

= Standard basis {(é) , ((1))} . not eigenvectors



Eigenvectors & Eigenvalues

Theorem
= All real, symmetric matrices can be diagonalized

= Orthogonal eigenbasis U = (uy] ... |ug)

A1
- A=U 3 Ut
Aa

= Symmetric matrices encode only non-uniform scaling



Diagonalization

Eigenvalue decomposition (diagonalization)

A U D Ut
orlofo]o
— 0O(oc2(0]|0
- 0/(0|cs| 0
0|{o|o0]a
\ v ) \ y ) \ y )
symmetric orthogonal orthogonal

Always possible for symmetric matrices
= Symmetric: AT = A



Computation

Simple algorithm
= "Power iteration” for symmetric matrices

= Computes largest eigenvalue even for large matrices
= Algorithm:
= Start with a random vector (maybe multiple tries)

= Repeatedly multiply with matrix
= Normalize vector after each step

= Repeat until ratio before / after normalization converges
(this is the eigenvalue)

= |ntuition:

= Largest eigenvalue = "dominant” component/direction



Powers of Matrices

What happens:

= A symmetric matrix can be written as:

A1
A=UDUT=U Ut
An

= Taking it to the k-th power yields:

2%
A = uputupu?T..-upuT = U( )UT
A

= EV's key to understanding powers of matrices



Generalization: SVD

Singular value decomposition:

= For any real matrix A
A=UDVT
= U, V are orthogonal
= D is a diagonal
= Diagonal entries g;: “singular values”
= U and V are different in general

= For symmetric matrices, they are the same
= Then: singular values = eigenvalues

= Analogous for linear operators (co-dim)



Singular Value Decomposition

Singular value decomposition
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‘the Swiss army knife
of linear algebra”

[wikipedia user Bisco]



Comparison: Diagonalization

Eigenvalue decomposition (diagonalization)
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(For symmetric matrices)



Singular Value Decomposition

SVD Solver

= For full rank, square A:
A=UDVT
= A-l=(UDVD-1=(VN)-1D-1(U-1)=VD-1UT
= Numerically very stable
= More expensive than iterative solvers

= General A possible (least-squares / pseudo-inverse)
= More later



